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a b s t r a c t

Wedevelop a switched feedback controller that optimizes the rate of convergence of the state trajectories
to the origin for a class of second order LTI systems. Specifically, we derive an algorithmwhich optimizes
the rate of convergence by employing a controller that switches between symmetric gains. As a byproduct
of our investigation, we find that, in general, the controllers which optimize the rate of convergence
switch between two linear subsystems, one of which is unstable. The algorithmwe investigatewill design
optimal switching laws for the specific case of second order LTI plants of relative degree two.
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1. Introduction

Stabilization of continuous time systems via both switched and
hybrid feedback is a problem that has received much attention in
the recent literature (see, e.g. [1–16]). In particular, much attention
has been given to the specific problem inwhich a second order lin-
ear plant (which is assumed not to be static output feedback stabi-
lizable) can be stabilized by employing a control law that switches
betweenmultiple static output feedback laws. Hu et al. gave a par-
tial answer to this question for second order systems in [4] based
upon the conic switching laws of [16]. Benassi et al. in [2] and Litysn
et al. in [9] derived necessary and sufficient conditions for a second
order linear plant to be stabilized via a hybrid feedback automaton
based upon a specific eigenvalue criterion. In our prior work [11],
we provide necessary and sufficient conditions on the stabilizabil-
ity of second order systems via a particular nonlinear output feed-
back law. The main result, repeated here, is as follows:

Theorem 1.1. Consider the system

ẋ = Ax+ Bu, y = Cx (1.1)

with A ∈ R2×2, B ∈ R2×1, and C ∈ R1×2, where neither C nor B
is identically 0. Define the root locus of this system to be the locus of
eigenvalues of A+ kBC as k varies continuously over R. Then exactly
one of the following statements is true:

1. The system is static output feedback stabilizable.

∗ Corresponding author. Tel.: +1 505 284 0499; fax: +1 505 284 2518.
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2. The system is not static output feedback stabilizable, but it has root
locus which takes on complex values for some values of k ∈ R and
is stabilizable by a control law of the form u(x) = v(x)Cx with

v(x1, x2) =
{
k1 w′x = 0
k2 w′x 6= 0.

Here, w′q = 0, where q is the sole stable, real eigenvector of the
matrix A+ k1BC, and where k2 is chosen such that the eigenvalues
of A+ k2BC are complex.

3. The system has a root locus which is real for all values of k ∈ R
and is not stabilizable by control of the form u(x) = v(x)Cx for any
choice of v(x).

When it is possible, Theorem 1.1 provides a constructive me-
thod of designing a stabilizing controller which implements either
static or switched output feedback. Such a result is attractive since
switching between static gains is a simple form of control; how-
ever, the result is not discriminatory in the sense that, if a given
second order system satisfies either the first or second item in The-
orem 1.1, there are several controllers which achieve stability. It
is therefore natural to ask the question as to whether there is a
smaller class of controllers which are easily characterizable and
which can be considered ‘‘good’’ in some sense.
The problem which we consider in this paper is the following:

we consider a family of state-dependent controllers of the form
u(x) = v(x)Cx where the scalar function v(x) is homogeneous of
degree zero and lies in a bounded, symmetric interval (i.e., v(x) ∈
[−v0, v0] for some v0 > 0). Using this family of controllers, we
then explicitly characterize a set of switching controllers which
maximize the rate of convergence (to be defined formally in the next
section) of the state trajectory to the origin.

0167-6911/$ – see front matter. Published by Elsevier B.V.
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Note that the problem of studying convergence rates is not a
new one as, in [10], it is shown that the Lyapunov exponent for a
class of second order systems in feedback with a particular linear
hybrid feedback controller can bemade arbitrarily large bymaking
a particular control parameter as large as is necessary. Independent
of the difference of technique/control architecture thatweuse here
vs. what is used in [10], the result we present here can be viewed
as an extension of this prior work in that sense that, when the
controller gain is bounded, we provide a controller which achieves
the largest rate of convergence subject to the given control bound.
Afterwe formally define the optimization problem to be consid-

ered,we shall begin by finding an optimal controller for a particular
state–space description of the plant P(s). We shall then show that
controller designs in arbitrary state–space descriptions can be ex-
tracted via an appropriate change of coordinates, and an explicit
algorithm for designing controllers in arbitrary state–space de-
scriptions will be presented. Due to space constraints, several
proofs and discussions have been curtailed or omitted (the reader
is referred to Chapter 3 of [15] for a more detailed treatment of the
subject matter presented here).
An interesting qualitative byproduct of the work we perform

here is the following:whenever the bound on the switching gain v0
is sufficiently large, the controllers which optimize the rate of con-
vergence end up switching between two linear subsystems, one
of which is exponentially unstable. This result may at first appear
counterintuitive, but as we show here, the optimal controllers that
we propose operate by driving the state of the system onto a sta-
ble manifold of the unstable subsystem, similar to the manner in
which a sliding mode controller operates.
During the preparation of this manuscript, it was pointed out

to us that Theorem 1.1 is very similar to the results of both [2,9],
with a small difference in that we employ a framework that
uses continuous-time nonlinear feedback lawswhile [2,9] examine
controllers which employ hybrid feedback automata. Hence, while
our initial result 1.1 was derived without knowledge of either of
these prior results, both [2,9] should be viewed as original sources
of the work upon which we expand in this document.

2. Problem formulation

2.1. Rate of convergence: Definition

Recall that a system described by ẋ = f (x) is said to be globally
exponentially stable if there exist constantsM, β > 0 such that, for
all solutions x(t),

‖x(t)‖ ≤ Me−βt‖x(0)‖ ∀t ≥ 0. (2.2)

For a globally exponentially stable autonomous system of the form
ẋ = f (x), x(0) = x0 where f (x) is homogeneous and piecewise
continuous, we define the rate of convergence R as

R = min
‖x0‖=1

lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
.

2.2. Problem: Maximum rate of convergence

Consider a second order single-input, single-output LTI system
of relative degree two of the form

ẋ = Ax+ Bu, y = Cx, (2.3)

and further consider a feedback control law of the form u(x) =
v(x)Cx, where u(x) is homogeneous, so that the overall intercon-
nected system is an autonomous system which takes the form

ẋ = Ax+ v(x)BCx, x(0) = x0: given. (2.4)

Here, the scalar function v(x) satisfies the condition v(x) ∈ [−v0,
v0] ∀x ∈ R2 with v0 > 0 such that:

• ∃v1 ∈ [−v0, v0] such that the eigenvalues of A + v1BC form a
complex conjugate pair.
• ∃v2 ∈ [−v0, v0] such that at least one of the eigenvalues of
A+ v2BC lies strictly in the open left half plane.

It is easily verified that any choice of v(x) that satisfies the
bulleted criteria above admits a stabilizing controller as described
in [11].
It is clear that, for each choice of v(x), the autonomous system

Eq. (2.4) has an associated rate of convergence R. For a given plant
Eq. (2.3) and given value v0, the task at hand is to find a choice
of v(x) such that the corresponding rate R is maximal. We use the
notation

R∗(v0) = max
v(x)∈[−v0,v0]

R(v(x))

to denote this optimal value.
In the sections that follow, we find a choice of v∗(x) ∈ [−v0, v0]

which achieves the maximal rate in the above optimization
problem and also explicitly characterize R∗(v0) in terms of v0 and
the parameters of the plant transfer function C(sI − A)−1B. We
prove optimality of the resulting controllers by first finding an
optimal controller for a particular state–space realization of a plant
with transfer function P(s) and then use this to form a general
design algorithm for arbitrary minimal state–space descriptions.

3. Optimal controller synthesis for plants of relative degree two

In this section, we consider the design of a controller which
maximizes the rate of convergence for a second order plant of the
form

P(s) =
c

s2 + as+ b
(3.5)

where a, b, and c ∈ R. Without loss of generality, we focus on the
case where c = 1. We first consider the problem of control design
for the case where the plant has state–space description given by

[
ẋ1
ẋ2

]
=


−
a
2

γ

−b+ a2
4

γ
−
a
2

[x1x2
]
+

 01
γ

 u (3.6)

y = x1 (3.7)

where γ > 0 is a free parameter that we shall choose. Under the
feedback law u = vx1, the characteristic polynomial of the closed-
loop system has roots

s =
−a±

√
a2 − 4b+ 4v
2

.

A straightforward calculation shows that, in order for the system to
be stabilizable via the switching algorithm of [11], v0 must satisfy
the following condition:

v0 >


∣∣∣∣a24 − b

∣∣∣∣ , a > 0

max
{
a2

4
− b, b

}
, a ≤ 0.

(3.8)

3.0.1. Upper bound on optimal rate of convergence

Our first goal is to prove the following statement:

Theorem 3.2. Consider the system of Eqs. (3.6) and (3.7) under the
feedback law u(x) = v(x)y with v(x) ∈ [−v0, v0] for all x ∈ R2
where v0 satisfies the conditions of Eq. (3.8). Suppose that v0 satisfies
the additional constraint that
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v0 ≥ 2b−
a2

2
. (3.9)

Then the optimal rate of convergence R∗(v0) satisfies the inequality

R∗(v0) ≤ −λmin(A+ v0BC)

where A, B, and C are the corresponding matrices of the state–space
description in Eqs. (3.6) and (3.7), and λmin(·) denotes the minimum
eigenvalue of a square matrix.

In the sequel we show that the above upper bound can be
achieved with equality by an appropriate controller selection.

Proof. Let Ã be given by

Ã(v(x)) = A+ v(x)BC =


−
a
2

γ

−b+ a2
4 + v(x)
γ

−
a
2

 .
Along the trajectories of the system we have

d
dt
‖x(t)‖2 = x(t)′

(
Ã(v(x(t)))+ Ã′(v(x(t)))

)
x(t)

≥ min
|v|≤v0

λmin

(
Ã(v)+ Ã′(v)

)
‖x(t)‖2.

Now, a simple calculation shows that

λmin

(
Ã(v)+ Ã′(v)

)
= −a−

∣∣∣∣∣γ + v − b+ a2
4

γ

∣∣∣∣∣ .
Note that the lower bound we derived on the derivative of the
squared Euclidean norm of x(t) must hold for any γ > 0.
Hence, we can fix γ to be a convenient value and compute the
corresponding minimum in the above expression. If we choose

γ =

√
a2
4 − b+ v0, we find that the minimum of the above

expression occurs at v = v0 and is given by

min
|v|≤v0

λmin

(
Ã(v)+ Ã′(v)

)
= 2λmin(A+ v0BC) , 2λ̃.1

Solving the resulting differential inequality, we find ‖x(t)‖2 ≥
e2λ̃t‖x(0)‖2. Now,

R∗(v0) = min
‖x(0)‖=1

lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
≤ min
‖x(0)‖=1

lim inf
T→∞

−
1
2T
ln
(
e2λ̃T‖x(0)‖2

)
= −λ̃. �

3.0.2. Achieving the upper bound: Optimal controller structure

We now derive a generic control law v(x) for which the
corresponding rate of convergence achieves the upper bound of
Theorem 3.2. We first find a controller v(x) for the state–space
description of Eqs. (3.6) and (3.7), and then show how to derive
optimal controllers for arbitrary state–space descriptions in a later
section.
As it turns out, a controller which achieves the upper bound

on the rate of convergence we derived in the previous section is a
so-called ‘‘bang–bang’’ controller, i.e., a controller which switches
between the two extreme values, v0 and −v0. To begin, we first
find the eigenspace of the matrix A + v0BC where A, B, and C

1 For the selected value of γ , note that A+v0BC is symmetric and, hence, has real
eigenvalues.

Fig. 3.1. Graphical depiction of switching law of Eq. (3.11).

are the state–space matrices of Eqs. (3.6) and (3.7) when γ =√
a2
4 − b+ v0:

A+ v0BC =

−
a
2

γ

γ −
a
2

 ,
which has eigenvalues λ(A + v0BC) = − a2 ± γ . If we denote the
minimum and maximum eigenvalues as λs and λu, respectively,
then the corresponding eigenvectorsws andwu are given by

ws =

[
−1
1

]
, wu =

[
1
1

]
. (3.10)

The basic algorithm that we use to achieve stability (and the upper
bound on the rate of convergence) is essentially the same as the
one used in [11]: we choose a value of gain that yields complex
eigenvalues to induce rotation and switch the value of the gain to
v0when the state trajectory lands on the stablemanifold. The exact
algorithm we use is described in the following theorem:

Theorem 3.3. Let ws and wu be given as in Eq. (3.10), and let w̃s
and w̃u be defined such that w̃′sws = 0 and w̃

′
uwu = 0 where w̃s

and w̃u are both oriented in a clockwise orientation. Suppose that
q =

[
q1 q2

]′ satisfies the conditions q2 > 0 and
(w̃′sq)(w̃

′

uq) < 0,

and let q̃ be defined in such a way that q̃′q = 0 where q̃ is oriented
clockwise. Then the control law

v(x) =
{
v0 x′(w̃sq̃′)x ≤ 0
−v0 x′(w̃sq̃′)x > 0

(3.11)

asymptotically stabilizes the plant of Eqs. (3.6) and (3.7) when γ =√
a2/4− b+ v0 with rate

R = −λmin(A+ v0BC).

An immediate corollary to Theorem 3.3 is the following.

Corollary 1. The optimal rate of convergence for the plant of Eqs.
(3.6) and (3.7) when v(x) is constrained to lie in the range [−v0, v0]
is

R∗(v0) = −λmin (A+ v0BC) .

The control law of Eq. (3.11) is depicted graphically in Fig. 3.1.
Essentially, if we pick any vector q that lies to the right of one of
the eigenvectors and to the left of the other, then this induces a
partition on the state–space where we use the gain v(x) = v0 in
the region bound by the ws and q, and where we use v(x) = −v0
in the region bound by wu and q. A sample phase portrait for an
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Fig. 3.2. Relative positioning ofws ,wu , q, and p for Lemma 3.1.

initial condition x(0) which lies in the region of the state–space
where v(x) = v0 is depicted in the figure, as well.
In order to prove Theorem 3.3, we need the result of the

following lemma.

Lemma 3.1. Consider a diagonalizable matrix A ∈ R2×2 which has
real eigenvalues λs and λu, λs < λu, and corresponding eigenvectors
ws andwu, respectively. Define w̃s and w̃u in such a way that w̃′sws =
0 and w̃′uwu = 0, and consider vectors q and p that satisfy the
following conditions: w̃′sq > 0, w̃′uq < 0, w̃′sp > 0, q̃′p < 0,
where q̃ satisfies q̃′q = 0. Assume that w̃s, w̃u, and q̃ are all oriented
in the same direction (either clockwise or counterclockwise) and that
w̃′swu ≥ 0. Then there exists t > 0 such that the state trajectory x(t)
of the system

ẋ = Ax, x(0) = p

satisfies the condition x(t) = αq for some α ∈ R.

A geometric interpretation of Lemma 3.1 is shown in Fig. 3.2.
The conditions in the lemma reflect the relative positioning of q and
p with respect to the two eigenvectors ws and wu. The conditions
on p and q ensure that there is no eigenvector between p and q,
and that p is closer in angle tows than q. Since λu > λs, one should
expect the phase portraits to approach wu as t → ∞. The overall
statement, then, reflects the following intuitive notion: since p lies
closer to the eigenvectorwith smaller eigenvalueλs than the vector
q, the state trajectory x(t)must cross the line defined by the vector
q at some finite, positive time. The proof of this statement can be
found in [11].

Proof of Theorem 3.3. We shall first show the following: the
closed loop system ẋ = (A + v(x)BC)x satisfies the condition
that, for every initial condition x(0), there exists t0 ≥ 0 such that
x(t0) = αws for some α ∈ R, i.e., that every initial condition is
driven onto the stablemanifold in finite time.We first consider the
case when x(0) lies in the region

x(0)′(w̃sq̃′)x(0) > 0.

In this region, we have the v(x(0)) = −v0. The eigenvalues of
the matrix A − v0BC in this region are of the form −a/2 ± jω0
where ω0 =

√
v0 + b− a2/4. Now, it is clear that there exists

some time t0 < π/ω0 for which x(t0)′(w̃sq̃′)x(t0) = 0 and for
which v(x(t)) = −v0 for all t < t0. This, in turn, implies that one
of the following conditions holds

w̃′sx(t0) = 0 or q̃′x(t0) = 0.

We shall show that the former condition must hold by showing
that the latter condition is impossible. Suppose that at time
t0, q̃′x(t0) = 0. We may equivalently write this condition as

x(t0) = β
[
q1 q2

]′, where β ∈ R, and let q̃ be the clockwise
oriented vector q̃ =

[
q2 −q1

]′. Now,
d
dt

(
x(t)′(w̃sq̃′)x(t)

)
= x(t)′(A− v0BC)′(w̃sq̃′)x(t)

+ x(t)′(w̃sq̃′)(A− v0BC)x(t). (3.12)

If Eq. (3.12) is satisfied, we find that

d
dt

(
x(t)′(w̃sq̃′)x(t)

)∣∣∣∣
t=t0

= β2(q1 + q2)
(
ω20

γ
q21 + γ q

2
2

)
.

Recalling the conditions (w̃′sq)(w̃
′
uq) < 0 and q2 > 0, we find that

q1+q2 > 0whichmeans that the above derivative is positive. But if
q̃′x(t0) = 0 and the above derivative is positive, then it follows that
x(t−0 )(w̃sq̃

′)x(t−0 ) < 0 which implies that v(x(t
−

0 )) = v0, i.e., that a
switch from −v0 to v0 has already occurred, which is an obvious
contradiction. Hence, we conclude that there exists t0 < π/ω0
such that w̃′sx(t0) = 0 or, equivalently, x(t0) = αws for some
α ∈ R.
Now consider the case where the initial condition x(0) satisfies

x(0)′(w̃sq̃′)x(0) ≤ 0.We shall break this condition down into three
separate cases

1. x(0) = αws, α ∈ R.
2. x(0) = βq, β ∈ R.
3. x(0)′(w̃sq̃′)x(0) < 0.

The first case immediately yields the result that we desire. For
the second case, the analysis above shows that if x(0) = βq for
some β ∈ R, then x(0+)′(w̃sq̃′)x(0+) > 0. Employing the time-
invariance of the interconnected system, the problem now reduces
to showing that there exists t0 > 0 such that the state trajectory
x̂(t) with initial state x̂(0) = x(0+) satisfies x̂(t) = αws for some
α ∈ R, which we already showed above.
To consider the final case, we shall use the result of Lemma 3.1.

By our assumptions, we have that w̃s, w̃u, and q̃ are all oriented in
the same direction (clockwise), and we also have that w̃′sq > 0,
w̃′uq < 0. Now, if we let p = x(0), one of the following pairs of
conditions must hold: either w̃′sp > 0 and q̃

′p < 0, or w̃′sp < 0
and q̃′p > 0. Because the interconnected system is homogeneous,
we may assume without loss of generality that the first set of
conditions holds.
Under these assumptions, Lemma 3.1 guarantees that there

exists some time t1 > 0 for which x(t) = βq for some β ∈ R.
But if we now consider the new initial condition z(0) = x(t1), we
know from the second case that there exists t2 such that z(t2) =
x(t1 + t2) = αws, α ∈ R. Hence, we may take t0 = t1 + t2.
Now, if we let λ̃ = λmin(A + v0BC) < 0, we see that, for every

initial condition x(0), there exists t0 ≥ 0 and α ∈ R such that
x(t) = αeλ̃(t−t0)ws from which asymptotic stability immediately
follows. To establish the result on the corresponding rateR, wenote
that

lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
= lim
T→∞
−
1
2T
ln
(
e2λ̃(T−t0)‖ws‖2

)
= −λ̃.

Since this results holds true for all x(0) ∈ R2, we conclude that

R = −λmin(A+ v0BC). �

A few comments are in order. First, it is clear that controllers
that achieve the optimal rate are not unique; the parameter q is
a free design parameter (subject to the constraints imposed in
Theorem3.3).Whilewe shall not discuss this in a formalmanner, it
is typically that case that one generally chooses q to be sufficiently
far (in an angular sense) from both of the eigenvectors ws and wu.
Choosing q to be very close to wu leads to ‘‘practical’’ instability
since, for initial conditions that lie in the shaded area of Fig. 3.1,
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the Euclidean norm of the state vector may grow very large before
the gain is switched from v0 to −v0. Choosing q too close to ws,
on the other hand, can lead to robustness issues if time delays are
present in the systems under consideration (see Chapter 4 of [15]
for an explanation of this particular matter).

Remark 3.1. Note that when v0 > b in addition to the assump-
tions of Eqs. (3.8) and (3.9), one eigenvalue of the matrix A+ v0BC
is real andpositive. Hence, for v0 sufficiently large, the optimal con-
trollers of Eq. (3.11) (which achieve the ‘‘most’’ stable closed-loop
system in terms of convergence rate) switch between two linear
subsystems, one of which is exponentially unstable.

The fact that every initial condition can be driven onto the stable
manifold in finite time using the control law of Eq. (3.11) yields the
following corollary whose proof is immediate:

Corollary 2. The system of Eqs. (3.6) and (3.7) under the control
action of Eq. (3.11) satisfies the condition

lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
= R∗(v0)

for every initial condition x(0) 6= 0.

One of the significant results of Corollary 2 is that it implies our
definition of rate of convergence (as supplied in Section 2) is
equivalent to the well-studied notion of the Lyapunov exponent
(see, e.g., [5]) when considering systems of the form Eqs. (3.6)
and (3.7) under the control action of Eq. (3.11). There is a minor
subtlety in that the Lyapunov exponent is defined for individual
trajectories (i.e., it is defined as a function of the initial condition
x(0) and can, hence, possibly take on different values for different
initial conditions), but Corollary 2 establishes that the Lyapunov
exponent is uniform over all initial conditions for the specific class
of systems being considered, and, hence, the two are equivalent
notions in this case.

3.0.3. Optimal controllers for arbitrary state–space descriptions

To obtain an optimal design for all other state–space realiza-
tions of a given second order transfer function of relative degree
two, essentially, one need only apply a simple change of coordi-
nates:

Proposition 3.1. Consider an exponentially stable system of the form
ẋ = Ax + v(x)BCx with rate of convergence R where v(x) takes the
form

v(x) =
{
v1 x′F1F ′2x ≤ 0
v2 x′F1F ′2x > 0

where F1, F2 are column vectors of appropriate dimension. Then the
system ż = Ãz + ṽ(z)B̃C̃z with ṽ(z) given by

ṽ(z) =
{
v1 z ′F̃1F̃ ′2z ≤ 0
v2 z ′F̃1F̃ ′2z > 0

with

Ã = T−1AT , B̃ = T−1B, C̃ = CT ,
F̃i = T ′Fi, i = 1, 2

where T is an invertible matrix is also exponentially stable with
convergence rate R.

Proof. Performing the change of coordinates z = Mx yields the
above expressions for thematrices Ã, B̃, C̃ , F̃1, and F̃2.What remains
to be shown is that the rate of convergence is invariant to a
coordinate change. In the new system of coordinates, the rate of
convergence R′ is given by

R′ = min
‖z(0)‖=1

lim inf
T→∞

−
1
2T
ln
(
‖z(T )‖2

)
= min
‖Mx(0)‖=1

lim inf
T→∞

−
1
2T
ln
(
x(T )′M ′Mx(T )

)
.

Now, for every initial condition x(0) and every T > 0, we have

−
1
2T
ln
(
λmax(M ′M)

)
+ r(T ) ≤ R′ ≤ −

1
2T
ln
(
λmin(M ′M)

)
+ r(T )

where r(T ) is given by

r(T ) = −
1
2T
ln
(
‖x(T )‖2

)
.

Applying the squeeze theorem to the above inequalities, we can
conclude that

R′ = min
‖Mx(0)‖=1

lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
.

Now, by Corollary 2, we have that

R = lim inf
T→∞

−
1
2T
ln
(
‖x(T )‖2

)
for every initial condition x(0), from which it immediately follows
that R′ = R. �

We shall now describe a method which does not require an
explicit change of coordinates, i.e., amethodof designing switching
controllers directly in the coordinate frame of interest.
The control laws we have constructed take the form shown in

Proposition 3.1 with F1 = w̃s and F2 = q̃. From the proof of
Lemma 3.1, we see that an invertible change of coordinates will
yield the following results, the proofs of which are immediate and
left to the reader:

• If F1 = w̃s is a vector which is normal to the stable eigenvector
of A+ v0BC , then the transformed vector F̃1 is a vector which is
normal to the stable eigenvector of T−1(A+ v0BC)T .
• If w̃s, w̃u and q satisfy the relationships w̃′sq > 0 and w̃

′
uq < 0,

then the transformed vectors ˆ̃w
′

sq̂ > 0 and ˆ̃w
′

qq̂ < 0 where
ˆ̃ws = T ′w̃s, ˆ̃wu = T ′w̃u, and q̂ = T−1q.

In layman’s terms, the above conditions tell us that, for any
state–space description, one can choose an optimal controller by
choosing one switching boundary to be the stable eigenvector and
choosing the other boundary to be a vector q that lies ‘‘between’’
the stable eigenvector and the unstable eigenvector. Specifically,
we pick q to lie in the region for which the state trajectories for
both ẋ = (A+ v0BC)x and ẋ = (A− v0BC)xwill move in the same
direction across the switching boundary which, in practice, can
be done via a graphical examination of the corresponding phase
portraits.

Example 3.1. Consider the unstable LTI plant[
ẋ1
ẋ2

]
=

[
0 1

−12 7

] [
x1
x2

]
+

[
0
1

]
u

y = x1

and the associated task of finding a switching controller v(x)which
achieves maximal convergence rate for |v(x)| ≤ 99.75. We begin
by computing the eigenvectors of the matrix A+ v0BC:

ws =

[
−1
6.5

]
, wu =

[
1
13.5

]
which are depicted graphically in Fig. 3.3. In order to determine
the region where we should place q (either the region bound by
the eigenvectors which contains the x2 axis, or the region bound by
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Fig. 3.3. Eigenvectors for thematrix A+v0BC for Example 3.1 (not drawn to scale).

the eigenvectors that contains the x1 axis), we first determine the
orientation of rotation for the phase portraits of A−v0BC . Note that
ẋ = (A− v0BC)x satisfies the property that, when x1 = 0, ẋ1 = x2.
From this, we immediately conclude that the phase portraits of
ẋ = (A− v0BC)x are rotating in a clockwise manner. By examining
the relative placement of the eigenvectors in Fig. 3.3, we see that
the phase portraits of ẋ = (A+ v0BC)x are rotating in a clockwise
manner in the regionwhich contains the positive x2 axis. Hence,we
may choose any q in this region to define our control law. Picking
q =

[
0 1

]′(and, correspondingly, q̃ = [1 0
]′) yields the control

law:

v(x) =
{
99.75 x1(6.5x1 + x2) ≤ 0
−99.75 x1(6.5x1 + x2) > 0.

3.0.4. Overall design algorithm

To summarize, we may design optimal rate controllers for a
second order system of relative degree two of the form

P(s) =
1

s2 + as+ b
by performing the following steps:
1. For a given gain bound v0, check to make sure that the
conditions

v0 >


∣∣∣∣a24 − b

∣∣∣∣ , a > 0

max
{
a2

4
− b, b

}
, a ≤ 0

and v0 > 2b− a2/4 are satisfied. If so, proceed to step 2.
2. Compute the eigenvectors of A + v0BC and the direction
of the phase portraits of ẋ = (A − v0BC)x (clockwise or
counterclockwise). Choose any vector q (and a corresponding
choice of q̃) in the region where the phase portraits rotate in
the same direction.

3. An optimal controller is given by

v(x) =
{
v0 x′w̃sq̃′x ≤ 0
−v0 x′w̃sq̃′x > 0

where w̃s and q̃ are normal vectors to ws and q, respectively,
that are oriented in the same direction.

4. Conclusion

We have provided an extension of the result in [11] to be able
to design controllerswith symmetric switching gains that optimize

the rate of convergence of the state trajectories to the origin. Note
that the controllers given here are not unique as the parameter q
is a free parameter (subject to the constraints listed here). More
detail on intelligent methods for choosing the parameter q can be
found in Chapter 3 of [15].
The methods described herein have been extended in two dif-

ferent directions. First, in [13], the controllers we present here are
shown to be finite L2 gain stabilizing in the presence of exogenous
inputs/plant disturbances. Moreover, the results obtained in [13]
hold not only when the true state is available, but they also hold
when only an estimate of the state (produced via a standard Luen-
berger observer) is available. That these switching controllers can
be shown to be finite L2 gain stabilizing has great consequences
of both theoretical and practical concern, including stability in the
presence of time delays. Furthermore, these results allow us to de-
sign switching controllers using the techniques described herein
for classes of systems that can be nonlinear, time-varying, and/or
of dimension greater than twowhich have a good second order LTI
approximant in an L2 gain sense.
Clearly, the presence of an observer affects convergence rate

(the rate of convergence of the state trajectory is affected by the
rate atwhich the observer can converge to the true state), but in an-
other document [14], we see that the presence of an observer does
not inhibit this switching architecture from having practical uses.
There, we examine the performance of the switching methods de-
scribed here (upon which we expanded in [13]) for a class of step-
tracking problems with objectives such as minimal overshoot and
minimal settling time, and we compare these results with those
obtained via more standard forms of LTI control.
As for future research directions, while [13] allows us to extend

our results to some systems of higher dimension, it is in general
desirable to examine whether/how the techniques described here
and in [11] can be extended to LTI systems of arbitrary (but finite)
dimension. Preliminary work indicates that an extension of the
work shown here in which the stable eigenvector is replaced by a
stable hyperplane, and the control is switched between multiple
state feedback controllers achieves qualitative results that are
similar to what we examine here.
As a final technical aside, the work presented here originally

stemmed from the study of a similar problem involving the use of
Pontryagin’sMaximumPrinciple for a class of time-optimal control
problems [12]. The reader interested in the historical formulation
of this problem is invited to read this older manuscript, but the au-
thors would like to explicitly point out that this formulation was
only helpful in discovering the form of the optimal control consid-
eredhere; themaximumprinciple has no real utility in establishing
formal proofs for the convergence rate problems considered in this
manuscript.
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